
АКТУАЛЬНЫЕ ПРОБЛЕМЫ НЕДРОПОЛЬЗОВАНИЯ

Влияние сборочно-сварочных параметров на характеристики процесса сварки сплава ЭП648 толщиной 2мм

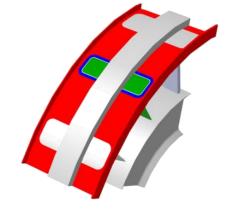
Докладчик: Галимов В.Р., аспирант кафедры


СЛАТ

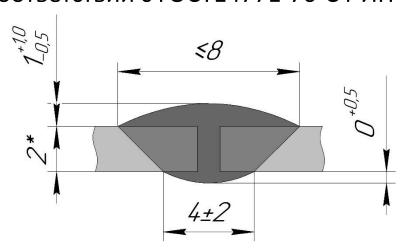
Научный руководитель: д.т.н. профессор

кафедры СЛАТ Медведев А.Ю.

Особенности сварки элементов в корпусов турбин газотурбинных двигателей (ГТД)


Проблемы:

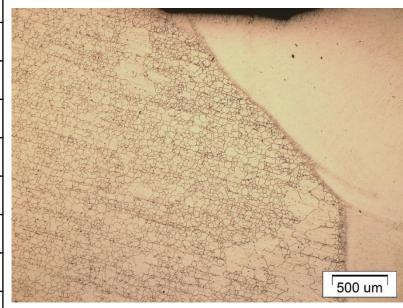
близкое расположение швов; склонность к образованию трещин; пересечение зон термического влияния от соседних швов.


Цель работы:

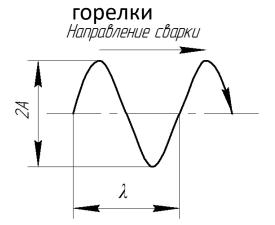
Оценить влияние типа разделки кромок и величины зазора на параметры режима и геометрию сварных соединений при сварке сплава ЭП648 толщиной 2мм

Примеры корпусов турбин газотурбинного двигателя

Геометрические параметры шва в соответствии с ГОСТ14771-76-С4-ИП



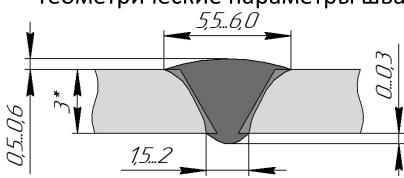
Применение импульсной сварки плавящимся электродом в защитных газах (P-GMAW или И-СПЭ) для сварки 4мм


Сравнение базовой технологии сварки ЭП718 толщиной 4мм с разработанной

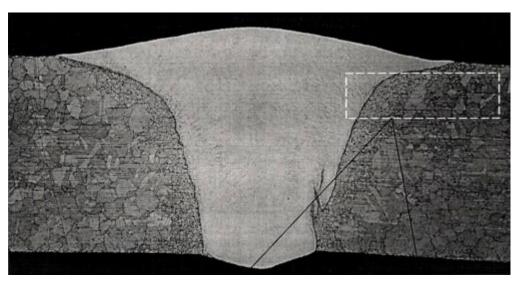
0+1-	7.7	7±1	
q _п =360 кДж/м	q _п =150 кДж/м	q _п =160 кДж/м	
Qг= 2022 л/мин	Q _г = 1618 л/мин	Q _г = 1620 л/мин	
Qк= 10 л/мин	Q _к = 4 л/мин	Q _к = 2 л/мин	
-	V _{пп} = 180 м/ч	V _{пп} = 200 м/ч	
-	$V_{CB} = 20-21 \text{ M/H}$	V _{св} = 18-19 м/ч	
U= 1012 B	U= 16 B	U =15 B	
I= 100120A	I = 70 A	I = 70 A	
Непрерывной дугой	Импульсный режим	Импульсный режим	
1-3 проходы	1 проход	2 проход	
Ручная АрДС	Роботизированная сварка проволокой Ø1,0		
Ручная АрДС	Роботизированная сварка проволокой Ø1,		

Микроструктура шва от двухпроходной сварки

Траектория движения сварочной



Применение импульсной сварки плавящимся электродом в защитных газах (P-GMAW или И-СПЭ) для сварки 3мм


Параметры режима сварки ЭП718 толщиной 3мм

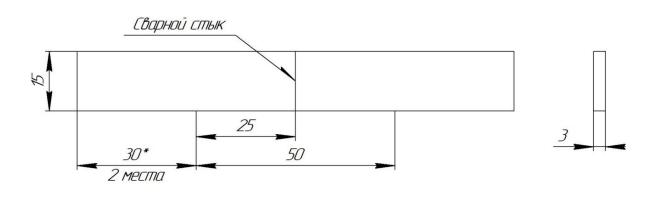
Роботизированная сварка плавящимся			
электродом Ø1,0мм			
Импульсный режим			
I = 70 A			
U= 17 B			
V _{св} = 22 м/ч			
V _{пп} = 180 м/ч			
Q _к = 4-5 л/мин			
Q _r = 1516 л/мин			
q _п = 150 кДж/м			
2A=0,5 mm, λ=1mm			

Геометрические параметры шва

Микроструктура шва

Результаты ПВК корня шва

Лицевая сторона


Результаты механических испытаний

Сравнение результатов механических испытаний сварных соединений из сплава ЭП718

Образец	Толщина, мм	Предел прочности $\sigma_{_{\! B}}$, МПа
ЭП718 (основной металл)	2	1100-1250
ЭП718 (сварка плавящимся электродом ЭП533)	3	1180-1205
ЭП718 (сварка плавящимся электродом ЭП533)	4	1060-1090
ЭП718 (ЭЛС)	4	1030-1160
ЭП718 (сварка неплавящимся электродом, ЭП533)	2	1150-1200
ЭП718 (сварка неплавящимся электродом, ЭП533)	10	1070-1080

Образцы после испытаний на растяжение со снятым усилением

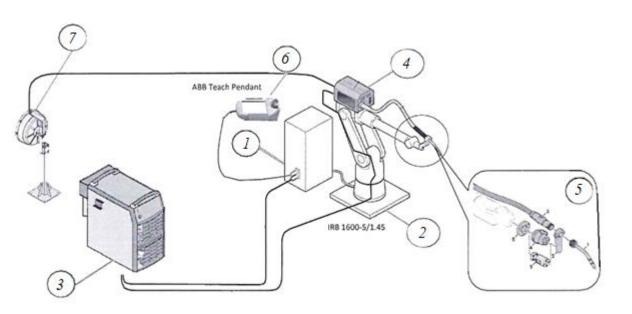
Размеры образцов для испытаний по ГОСТ6996

Перспективы применения импульсной сварки плавящимся электродом для соединений толщиной до 3мм

Соединение без разделки кромок по ГОСТ14771

	чного сечения	Толщина свариваемых деталей, мм, для способов сварки			Условное обозначение	
подготовленных кромок	выполненного шва	ин	ИНп	ип	УП	сварного соединения
		0.5.40	0.8.60	0 % 6 0	0,8-6,0	C2
		0,5—4,0	0,8—6,0	0,8-6,0	0,8—8,0	C4

Рекомендуемая сборка под сварку при толщине менее 3мм в документации (C4)


Соединение с разделкой двух кромок по ГОСТ14771

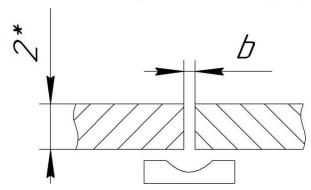
Форма попере	чного сечения	Толщина свариваемых деталей, мм, для способов сварки			Условное обозначение	
подготовленных кромок	выполненного шва	ин	ИНπ	ип	УП	сварного соединения
						C17
		_	3—10	3—10	3—60	C18

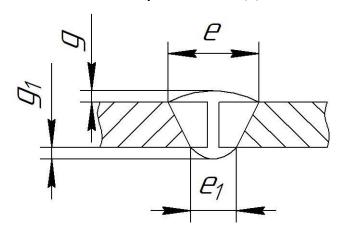
Сборка под сварку, использованная при сварке толщин 3-5мм (С18)

Оборудование и материалы

Состав ячейки:

- 1. Контроллер ABB IRC5;
- 2. Универсальный манипулятор ABB IRB 1600;
- 3. Сварочный источник питания ESAB AristoMIG500i (Integrated);
- 4. Механизм подачи проволоки ESAB RoboFeed;
- 5. Сварочная горелка ESAB;
- 6. Пульт управления роботизированный комплексом ABB FlexPendant;
- 7. Кронштейн для установки кассет с проволокой.


Материалы:
Электрод ЭП533 Ø1,0мм
Пластины 100х50х2 с разделкой
30° и без разделки


Сварка без разделки с варьированием зазора

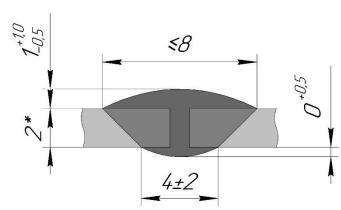
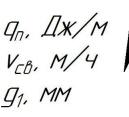
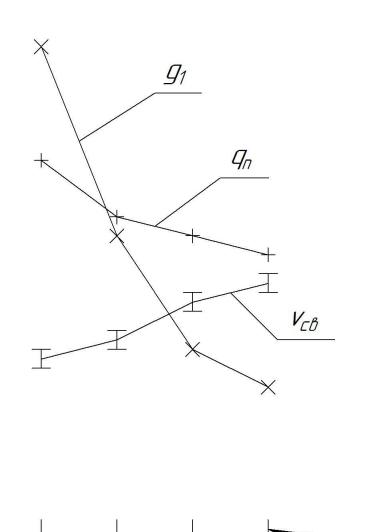
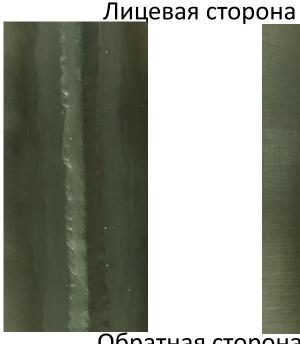

Nº	1	2	3	4
Параметр				
b, мм	0,0	0,5	1,0	1,5
I _{cp} , A		65	5-70	
U _{cp} , A			18	
V _{св} , м/ч	16-18	18-20	21,5-23,5	23-25
V _п , м/ч	180			
Р _и , Вт	870-950 (900)			
q _п , Дж/мм	200	170	150	140
е, мм	4,7-5,3	4-5	5,5-6,5	5,5-6,5
g, MM	1,8-2	1,8-2	1,2-1,4	0,8-1,2
e ₁ , мм	3,4-4,0	2-3,5	1,8-2,5	1,7-2,5
g ₁ , MM	1,2-1,5	0,5-1,2	0,3-0,6	0,2-0,6

Схема сборки под сварку


Схема сварного соединения




Сварка без разделки с варьированием зазора

3asop 1mm

Влияние зазора на скорость, погонную энергию и высоту обратного валика

рона

Обратная сторона

Внешний вид сварных образцов:

Без зазора

Расчет тепловых полей от движущегося источника при сварке без разделки кромок

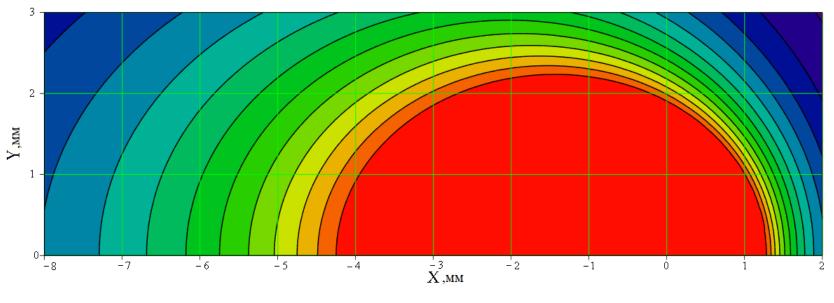
$$dT(x,y) := \frac{q}{2 \cdot \pi \cdot \lambda \cdot \delta} \cdot exp \left(\frac{-v \cdot x}{2 \cdot a} \right) \cdot K0 \left(\frac{v \cdot r(x,y)}{2 \cdot a} \cdot \sqrt{1 + \frac{4 \cdot a \cdot b}{2}} \right) Cxema движущегося линейного источника тепла в бесконечной пластике$$

$$\frac{dT(x,y,z)}{2\pi\cdot\lambda\cdot R(x,y,z)} := \frac{q}{2\pi\cdot\lambda\cdot R(x,y,z)} \cdot \exp\!\left[\frac{-v}{2a}(R(x,y,z)+x)\right] \quad \text{Схема движущегося точечного источника тепла в полубесконечном теле}$$

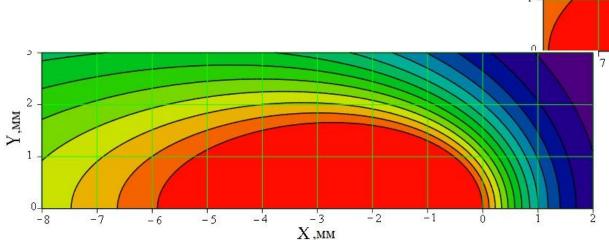
$$R(x,y,z) := \sqrt{x^2 + y^2 + z^2}$$

 $r(x,y) := \sqrt{x^2 + y^2}$

Функции, описывающие координаты точки в двухмерной и трехмерной системе координат


Теплофизические свойства

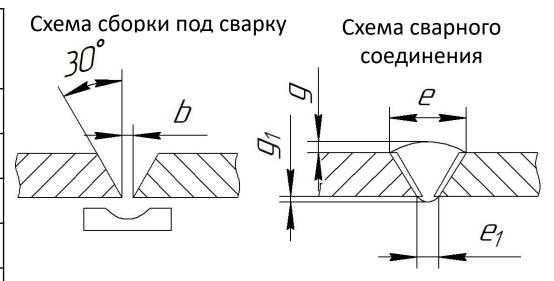
а	ср	λ	b
4,2mm ² /c	3,66Дж/(см ³ К)	0,15Вт/(см*К)	1,26c ⁻¹


Расчет тепловых полей от движущегося источника при

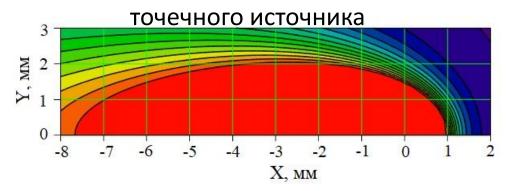
сварке без разделки кромок Тепловые поля от линейного источника (образец без зазора)

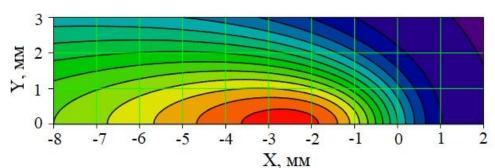
Y,mm

Тепловые поля от точечного источника на лицевой стороне (образец с зазором 1мм)


Тепловые поля от точечного источника на обратной стороне (образец с зазором 1мм)

Х,мм




Сварка с разделкой кромок

Nº	1	2	
Параметр			
b, mm	0,0	0,5	
I _{cp} , A	65-7	' 0	
U _{cp} , A	18		
V _{св} , м/ч	32-40	32-36	
V _п , м/ч	180		
Р _и , Вт	870-950 (900)		
q _п , Дж/мм	75-100	90-100	
е, мм	4,5-5,0	4,5-5,0	
g, MM	0,7-1 0,6-0,9		
e ₁ , мм	0,5-1,3	≤0,7	
g ₁ , MM	0-0,5	0-0,5	

Температурные поля от движущегося

Сравнение результатов сварки с разделкой и без

Параметр	Без разделки, зазор 0-0,5мм	Без разделки, зазор 1-1,5мм	С разделкой, зазор 0-0,5 мм
Сечение шва	5,3	5,4	0,5
Сечение шва при схематизации источника нагрева	4,4	5,2	4,1
Погонная энергия, Дж/мм	170-200	140-150	75-100
Удельная энергия на единицу площади шва, Дж/мм² (q _п /δ)	85-100	70-75	37,5-50
Ширина шва е, мм	4-5	5,5-6,5	4,5-5

Выводы

- 1. В соответствии с ГОСТ 14771 сварка плавящимся электродом толщин менее 3 мм должна вестись без разделки кромок, а для толщин 3...6 мм допускаются соединения как с разделкой, так и без нее.
- 2. При сварке проволокой ЭП533 металла толщиной 2мм без разделки кромок тепловложение оказывается таким же или больше по сравнению со сваркой металла толщиной 3мм с разделкой кромок на ранее разработанном режиме.
- 2. Экспериментально показано, что сварка металла толщиной 2мм с разделкой кромок обеспечивает снижение тепловложения в 1,5-2 раза по сравнению со сваркой без разделки кромок.
- 3. Форма проплавления при сварке с разделкой кромок наиболее точно описывается схемой точечного источника на поверхности полубесконечного тела, вне зависимости от величины сварочного зазора.
- 4. При сварке соединений без разделки для зазоров менее 1 мм форма проплавления удовлетворительно описывается схемой линейного источника в пластине, а при больших зазорах ближе к точечному источнику. Этим обусловлен скачок в характеристиках процесса сварки при переходе от зазора 0-0,5мм к 1-1,5мм.

Спасибо за внимание!

